Although a larger wing creates more frontal area and hence presents more of an obstruction to the airflow, it is in fact the drag induced the unseen air spilling off the wing that’s creates most of the rear wings drag. In fact an F1 wing despite looking so streamlined creates more drag than a solid block of the same dimensions. This is because an F1 wing is so highly loaded as it strives to create huge amounts of downforce from such a small surface area, that the air coming off the wing creates an invisible extension to the wings frontal area. Created by both the airflow rising all but vertically off the centre part of the rear wing and then the even more draggy vortices spiralling off the wing tips. These vortices are often seen in wet conditions and used to be seen as a sign of an efficient wing, but are in fact hugely detrimental to the downforce\drag coefficient of a rear wing. This is why we see such efforts to reduce wing angles near the endplates and team make the slits in the endplates, as these are all aimed at reducing these vortices.
Bookmarks